• <em id="fwonq"><em id="fwonq"></em></em>

    <strong id="fwonq"><dl id="fwonq"></dl></strong>
    <center id="fwonq"><menuitem id="fwonq"></menuitem></center>

      <em id="fwonq"></em>
    1. 電力半導體模塊發(fā)展新趨勢

      時間: 2013-05-27 瀏覽數(shù): 0

        一種新型器件的誕生往往使整個裝置系統(tǒng)面貌發(fā)生巨大改觀,促進電力電子技術(shù)向前發(fā)展。自1957年第一個晶閘管問世以來,經(jīng)過40多年的開發(fā)和研究,已推出可關(guān)斷晶閘管(GTO),絕緣柵雙極晶體管(IGBT)等40多種電力半導體器件,目前正沿著高頻化、大功率化、智能化和模塊化的方向發(fā)展,本文將簡要介紹模塊化發(fā)展趨勢。

        所謂模塊,最初定義是把兩個或兩個以上的電力半導體芯片按一定電路聯(lián)成,用RTV、彈性硅凝膠、環(huán)氧樹脂等保護材料,密封在一個絕緣的外殼內(nèi),并與導熱底板絕緣而成。自上世紀70年代Semikron Nurmbeg把模塊原理(當時僅限于晶閘管和整流二極管)引入電力電子技術(shù)領(lǐng)域以來,因此模塊化就受到世界各國電力半導體公司的重視,開發(fā)和生產(chǎn)出各種內(nèi)部電聯(lián)接形式的電力半導體模塊,如晶閘管、整流二極管、雙向晶閘管、逆導晶閘管、光控晶閘管、可關(guān)斷晶閘管、電力晶體管(GTR)、MOS可控晶閘管(MCT)、電力MOSFET以及絕緣柵雙極型晶體管(IGBT)等模塊,使模塊技術(shù)得到蓬勃發(fā)展,在器件中所占比例越來越大。

        據(jù)美國在上世紀90年代初統(tǒng)計,在過去十幾年內(nèi),300A以下的分立晶閘管、整流二極管以及20A以上達林頓晶體管市場占有量已由90%降到20%,而上述器件的模塊卻由10%上升到80%,可見模塊發(fā)展之快。

        隨著MOS結(jié)構(gòu)為基礎(chǔ)的現(xiàn)代半導體器件研發(fā)的成功,亦即用電壓控制、驅(qū)動功率小、控制簡單的IGBT、電力MOSFET、MOS控制晶閘管(MCT)和MOC控制整流管(MCD)的出現(xiàn),開發(fā)出把器件芯片與控制電路、驅(qū)動電路、過壓、過流、過熱和欠壓保護電路以及自診斷電路組合,并密封在同一絕緣外殼內(nèi)的智能化電力半導體模塊,即IPM。

        為了更進一步提高系統(tǒng)的可靠性,適應電力電子技術(shù)向高頻化、小型化、模塊化發(fā)展方向,有些制造商在IPM的基礎(chǔ)上,增加一些逆變器的功能,將逆變器電路(IC)的所有器件都以芯片形式封裝在一個模塊內(nèi),成為用戶專用電力模塊(ASPM),使之不再有傳統(tǒng)引線相連,而內(nèi)部連線采用超聲焊、熱壓焊或壓接方式相連,使寄生電感降到最小,有利于裝置高頻化。一臺7.5KW的電機變頻裝置,其中ASPM只有600×400×250(mm)那么大,而可喜的是,這種用戶專用電力模塊可按應用電路的不同而進行二次設(shè)計,有很大的應用靈活性。但在技術(shù)上要把邏輯電平為幾伏、幾毫安的集成電路IC與幾百安、幾千伏的電力半導體器件集成在同一芯片上是非常困難的。雖然目前已有1.5KW以下的ASPM出售,但要做大功率的ASPM,還需要解決一系列的問題,因此迫使人們采用混合封裝形式來制造適用于各種場合的集成電力電子模塊(IPEM),IPEM為新世紀電力電子技術(shù)的發(fā)展開了新途徑。

        智能晶閘管模塊

        晶閘管和整流二極管模塊主要指各種電聯(lián)接的橋臂模塊和單相整流橋模塊,晶閘管模塊經(jīng)過近30年的開發(fā)和生產(chǎn),目前制造這種系列模塊的技術(shù)已相當成熟,生產(chǎn)成品率也相當高,使用亦很普遍和成熟,已成為電力調(diào)控的重要器件,因此這里不再介紹。

        晶閘管智能模塊就是ITPM(Intelligent thyristor power module)把晶閘管主電路與移相觸發(fā)系統(tǒng)以及過電流、過電壓保護傳感器共同封閉在一個塑料外殼內(nèi)制成。由于晶閘管是電流控制型電力半導體器件,所以需要較大的脈沖觸發(fā)功率才能驅(qū)動晶閘管,又加其它一些輔助電路的元器件,如同步電流的同步變壓器等體積龐大,很難使移相觸發(fā)系統(tǒng)與晶閘管主電路以及傳感器等封裝在同一外殼內(nèi)制成晶閘管智能模塊。因此,世界上一直沒有擺脫將晶閘管器件與門極觸發(fā)系統(tǒng)分立制作的傳統(tǒng)形式。

        山東淄博臨淄銀河高技術(shù)開發(fā)有限公司,經(jīng)多年的開發(fā)研究,解決了同步元器件微型化問題,使之適合集成應用之后,繼而解決了提高信號幅度、抗干擾、高壓隔離和同步信號輸入等問題,并研制開發(fā)出高密度的功率脈沖變壓器和多路高速大電流IC,以及兩種適合集成模塊專用IC。在采用了導熱、絕緣性能良好的DCB板、鉬銅板,具有良好電絕緣和保護性能和良好熱傳導作用的彈性硅凝膠等特殊材料后,開發(fā)出多種具有各種功能的晶閘管智能模塊,如三相、單相集成移相調(diào)控晶閘管智能交流開關(guān)模塊,帶過零觸發(fā)電路的三相、單相交流開關(guān)模塊等。

        圖1為晶閘管智能三相橋模塊的內(nèi)部接線圖(a)及其它外形照片(b),還有晶閘管智能電機控制模塊,解決了一直未能實現(xiàn)的晶閘管主電路與移相觸發(fā)系統(tǒng)以及保護取樣傳感器共同封裝在一個塑料外殼內(nèi)的難題。臨淄銀河公司研制出模塊最大工作線電流為1600A(RMS),額定工作電壓為380V和600V,已用于交流變頻、交直流電氣傳動以及三相交流固態(tài)開關(guān)和恒壓、恒流電源等領(lǐng)域。

      淄博市臨淄銀河高技術(shù)開發(fā)有限公司

      圖1

        IGBT智能模塊

        上世紀80年代初,IGBT器件的研制成功以及隨后其額定參數(shù)的不斷提高和改進,為高頻、較大功率應用范圍的發(fā)展起到了重要作用,由于IGBT模塊具有電壓型驅(qū)動,驅(qū)動功率小,開關(guān)速度高,飽和壓降低和可耐高電壓和大電流等一系列應用上的優(yōu)點,表現(xiàn)出很好的綜合性能,已成為當前在工業(yè)領(lǐng)域應用最廣泛的電力半導體器件。其硬開關(guān)頻率達25KHz,軟開關(guān)頻率可達100KHz。而新研制成的霹靂型(Thunderbolt)型IGBT,其硬開關(guān)頻率可達150KHz,諧振逆變軟開關(guān)電路中可達300KHz。

        目前,IGBT封裝形式主要有塑料單管和底板與各主電路相互絕緣的模塊形式,大功率IGBT模塊亦有平板壓接形式。由于模塊封閉形式對設(shè)計散熱器極為方便,因此,各大器件公司廣泛采用。另一方面,IGBT模塊生產(chǎn)工藝復雜,制造過程中要做十幾次精細的光刻套刻,并經(jīng)相應次數(shù)的高溫加工,因此要制造大面積即大電流的IGBT單片,其成品率將大大降低??墒牵琁GBT的MOS特性,使其更易并聯(lián),所以模塊封裝形式更適合于制造大電流IGBT。起初由于IGBT要用高阻外延片技術(shù),電壓很難突破,因為要制造這樣高壓的IGBT,外延厚度就要超過微米,這在技術(shù)上很難,且?guī)缀醪荒軐嵱没?/p>

        1996年日本多家公司采用<110>晶面的高阻硅單晶制造IGBT器件,硅片厚度超過300微米,使單片機IGBT的耐壓超過2.5KV,因此,同年東芝公司推出的1000A/2500V平板壓接式IGBT器件就是由24個80A/2500V的芯并聯(lián)組成。

        1998年ABB公司采用在陽極側(cè)透明(Transparent)P+發(fā)射層和N-層緩沖層結(jié)構(gòu),使IGBT模塊的耐壓高達4.5KV,而該公司同年研發(fā)成的1200A/3300V的IGBT模塊就是由20個IGBT芯片和12個FWD芯片并聯(lián)制成。此后,非穿通(NPT)和軟穿通(SPT)結(jié)構(gòu)IGBT的試制成功,使IGBT器件具有正電阻溫度系數(shù),更易于并聯(lián),這為高電壓、大電流IGBT模塊的制造只需并聯(lián)無需串聯(lián)創(chuàng)造了技術(shù)基礎(chǔ)。目前,已能批量生產(chǎn)一單元、二單元、四單元、六單元和七單元的IGBT標準型模塊,其最高水平已達1800A/4500V。圖2為300A/1700V IGBT模塊的電路圖,它是由4個160A/1700V IGBT芯片和8個100A/1700V快恢復二極管組成。

      淄博市臨淄銀河高技術(shù)開發(fā)有限公司

      圖2

      淄博市臨淄銀河高技術(shù)開發(fā)有限公司

      圖3

        但是隨著模塊頻率的提高和功率的增大,內(nèi)部寄生電感較大的一般IGBT模塊結(jié)構(gòu),已不能適應應用的需要。為了降低模塊內(nèi)部的裝配寄生電感,使器件在開關(guān)時產(chǎn)生的過電壓最小,以適應調(diào)頻大功率IGBT模塊封裝的需要,ABB公司開發(fā)出一種如圖3所示的平面式低電感模塊(ELIP)的新結(jié)構(gòu),該結(jié)構(gòu)與一般傳統(tǒng)結(jié)構(gòu)的主要區(qū)別在于:(1)它采用很多寬而簿的銅片重疊形成發(fā)射極端子和集電極端子,安裝時與模塊銅底板平行,并采用等長平行導線直接從IGBT發(fā)射極連到發(fā)射極端子上,而集電極端子則連到DBC板空間位置上,從而消除了互感,限制了鄰近效應,降低了內(nèi)部寄生電感量;(2)許多并聯(lián)的IGBT和FWD芯片都焊在無圖形的DBC板上,且IGBT的發(fā)射極和FWD的陽極上焊有鉬緩沖片,IGBT的柵極與柵極均流電阻鋁絲鍵合相連,這樣使芯片間的電流分布和整流電壓條件一致,有利于模塊芯片能在相同溫度下工作,大大提高了模塊出力和可靠性;(3)模塊采用堆積式設(shè)計,把上下絕緣層、上下電極端子以及印制電路板相互疊放,并用粘合膠粘合在一起(粘合時要避免氣泡),能很好地隨溫度循環(huán),無需考慮所謂焊應應力,即所謂的電極“S”形設(shè)計。

        由于MOS結(jié)構(gòu)的IGBT是電壓驅(qū)動的,因此驅(qū)動功率小,并可用IC來實現(xiàn)驅(qū)動和控制,進而發(fā)展到把IGBT芯片、快速二極管芯片、控制和驅(qū)動電路、過壓、過流、過熱和欠壓保護電路、箝位電路以及自診斷電路等封裝在同一絕緣外殼內(nèi)的智能化IGBT模塊(IPM),它為電力電子逆變器的高頻化、小型化、高可靠性和高性能創(chuàng)造了器件基礎(chǔ),亦使整機設(shè)計更簡化,整機的設(shè)計、開發(fā)和制造成本降低,縮短整機產(chǎn)品的上市時間。由于IPM均采用標準化的具有邏輯電平的柵控接口,使IPM能很方便與控制電路板連接。IPM在故障情況下的自保護能力,降低了器件在開發(fā)和使用的損壞,大大提高了整機的可靠性。

      青草久久人人97超碰_,一区二区無碼在線觀看,全黄无码a级毛片免费看,在线观看视频一区二区三区 免费看一区二区日本在线播放 国产综合精品女在线观看
    2. <em id="fwonq"><em id="fwonq"></em></em>

      <strong id="fwonq"><dl id="fwonq"></dl></strong>
      <center id="fwonq"><menuitem id="fwonq"></menuitem></center>

        <em id="fwonq"></em>